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Abstract
Using a variant of parallel tempering, we study the changes in sampling within a
simulation, when the all-atom model is coupled to a Go-like potential. We find
that the native structure is not the lowest-energy configuration in the all-atom
force field. Adding a Go term deforms the energy landscape in such a way that
the native configuration becomes the global minimum but does not lead to faster
thermalization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Most proteins exist at room temperature in a unique structure that one can identify with
the lowest potential energy conformation [1]. It is now commonly assumed that the energy
landscape of a protein is shaped like a funnel with the native state at the bottom [2]. The
landscape has, however, many deep local minima and high barriers, because the average protein
contains thousands of atoms, and interactions between the atoms can be both repulsive and
attractive.

Due to the large number of continuous degrees of freedom and the rough energy landscape,
simulating proteins remains a computational challenge. The time to find the native structure of
a protein (the bottom of the funnel) depends both on the roughness of the energy landscape
and the steepness of the funnel. The more pronounced the funnel is, the more quickly the
protein will fold. This is one reason for the popularity of the Go model [3–5]. Its basic
assumption is that only interactions present in the native state of a protein are relevant for
the folding process. An appropriate energy function then ignores non-native interactions and
rewards native interactions. Hence, the Go model represents a perfect funnel model and has
none of the roughness normally associated with the protein-folding energy landscape. In their
1981 paper, Abe and Go [3] used a lattice model, where each amino acid occupied a single
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Figure 1. Native structure of the 46 amino-acid long segment of protein A (1bdd) used as a native
reference structure. The structure taken from the Protein Data Bank has been adjusted to fit the
standard geometry assumed by ECEPP/3, where the bond lengths are fixed. The ground state
consists of three helices and two loops connecting the helices.

lattice site. If two amino acids are on adjacent sites that are neighbours in the native state,
the system reduces its energy by ε. Go-like energy terms are usually only defined between
heavy atoms in the protein backbone and therefore lack the detail of all-atom force fields. On
the other hand, all-atom simulations relying on present energy functions utilize a number of
approximations that may lead to additional spurious minima [6–8] and therefore to an energy
landscape with an artificially increased roughness. As a consequence, all-atom simulations are
usually too slow to allow an efficient study of the folding of stable domains in proteins, which
contain of the order of 50–200 residues.

To speed up all-atom simulations one could deform the energy landscape to obtain a steeper
folding funnel. In principle, this can be done by adding a Go-like term to the all-atom energy
function. For instance, Pogorelov and Luthey-Schulten used this method to speed up molecular
dynamics simulations of the folding of the λ-repressor [9]. It is not clear, however, what
the optimal coupling is, how the speed up depends on the coupling, and at what coupling
the system is dominated by the Go term. A simple Go model as described above is unable
to distinguish the native configuration from its mirror image. More complete descriptions,
especially for off-lattice models, take the local backbone geometry into account through, for
example, bond or dihedral angle potentials [10] or other potentials that represent the stiffness
of the backbone [11–13]. Obviously, the combination of an all-atom energy function with a Go
term can also be regarded as a way to suppress mirror images in a simulation of a Go model.
Again, the question of the optimal coupling appears.

We have studied these questions using a 46-residue segment of protein A (1bdd in the
Protein Data Bank) and a variant of the parallel tempering method that will be introduced in
the next section. The structure of the protein is shown in figure 1. The segment consists of
three helices and short loops connecting the helices. In the following we will first introduce our
method; this will be followed by our results and concluding remarks.

2. Methods

Our investigations rely on simulations of protein A with the ECEPP/3 force field [14, 15]. This
force field is implemented in the 2005 version of the program package SMMP [16, 17]. The
interactions between the atoms within a protein are approximated by a sum EECEPP/3 consisting
of electrostatic energy EC, a Lennard-Jones term ELJ, a hydrogen-bonding term Ehb, and a
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torsion energy Etor:

EECEPP/3 = EC + ELJ + Ehb + Etor

=
∑

(i, j)

332qi q j

εri j
+
∑

(i, j)

(
Ai j

r 12
i j

− Bi j

r 6
i j

)
+
∑

(i, j)

(
Ci j

r 12
i j

− Di j

r 10
i j

)

+
∑

l

Ul(1 ± cos(nlξl)), (1)

where ri j is the distance between the atoms i and j , and ξl is the lth torsion angle. The factor
332 sets the scale of the electrostatic energy to kcal mol−1. The charges qi are partial charges
on the atoms. The factors Ai j , Bi j , Ci j , and Di j depend on the type of atoms involved, and the
factors Ul depend on the residue and the type of dihedral angle. All of these values have been
determined empirically and are given in [14, 15]. The magnitudes are chosen such that energies
are measured in kcal mol−1.

The all-atom energy of our molecule is the sum of the intramolecular interactions and the
ones between protein and the surrounding solvent:

Eaa = EECEPP/3 + Esolv, (2)

where the protein–solvent interaction is approximated by a solvent-accessible surface term:

Esolv =
∑

i

σi Ai . (3)

The sum goes over the solvent-accessible areas Ai of all atoms i weighted by solvation
parameters σi as determined in [18], a common choice when the ECEPP/3 force field is
utilized. Note that Esolv is a rather crude approximation of the interaction between the
polypeptide and the surrounding water motivated by the low computational costs compared
to simulations with explicit water molecules.

The competing interactions in this detailed energy function lead to an energy landscape that
is characterized by a multitude of minima separated by high energy barriers. As the probability
to cross an energy barrier of height �E is given by exp(−�E/kBT ) (kB the Boltzmann
constant) it follows that extremely long runs are necessary to obtain sufficient statistics in
regular canonical simulations at a low temperature T .

One popular method to overcome the resulting extremely slow thermalization at low
temperatures is parallel tempering [19, 20] (also known as the replica exchange method or
multiple Markov chains), a technique first applied to protein studies in [21]. In its most common
form, one considers an artificial system built up of N non-interacting replicas of the molecule,
each at a different temperature Ti . In addition to standard Monte Carlo or molecular dynamics
moves that act only on one replica (i.e., the molecule at a fixed temperature), an exchange of
conformations between two copies i and j = i + 1 is allowed with probability

w(Cold → Cnew) = min(1, exp(−βi E(C j) − β j E(Ci ) + βi E(Ci ) + β j E(C j ))). (4)

The exchange of conformations leads to a faster convergence of the Markov chain at low
temperatures than is observed in regular canonical simulations with only local moves. The
resulting random walk in temperatures allows the configurations to move out of local minima
and cross energy barriers.

While parallel tempering is traditionally done in temperature space, it can be used with
varying potentials as well. The system could be coarse grained across replicas, or the solvent
terms could be varied. This idea was introduced under the name ‘model hopping’ in [22]
and is implemented in this paper by varying the strength of an additional Go-like potential
term instead of the temperature. With this we can study the effect of a Go-like potential on
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the statistics of a Monte Carlo simulation of a protein. Go-like potentials have their origin
in lattice models. They reward native contacts with a reduction in energy. If we assume that
long- and short-range interactions cooperatively fold the protein into its native structure—this
idea is often depicted as a funnel-like structure of the energy landscape—an additional Go-like
potential smoothes the energy landscape, which should lead to faster folding.

With the added Go-like energy our energy function becomes

Etot = Eaa + kGo EGo, (5)

where Eaa is the all-atom energy defined above and kGo a parameter that describes the strength
of coupling between the two energies. We use the same form for the Go-like energy term as
Pogorelov and Luthey-Schulten [9]. It is based on an associative memory Hamiltonian with a
single memory. Associative memory Hamiltonians have been used successfully to recognize
tertiary structures in proteins [23] and to study protein folding [24]. They capture the long-
range effects of protein folding better than, for example, a square well. The form used here can
be viewed as a continuum model of the original Go lattice model.

EGo =
Ncα∑

i

Ncα∑

j �=i,±1,±2

γi j exp

⎡
⎢⎣−

(
ri j − rNat

i j

)2

(|i − j |0.15
)2

⎤
⎥⎦ . (6)

The values of γi j were chosen as in [9] as γi j = 0.4 if 3 � |i − j | < 9 and γi j = 0.5 if
|i − j | � 9, where i and j are the indices of the residues.

We also define an order parameter Q,

Q = 1

Ncontacts
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(
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)2

(|i − j |0.15
)2

⎤

⎥⎦ , (7)

which measures how native-like the current configuration is. It varies between zero and one,
where one is the value of the native configuration.

3. Results and discussion

We start by presenting our results for a regular parallel tempering simulation without any Go
potential (kGo = 0). Our simulation used 24 replicas with temperatures varied between 297
and 1429 K. Starting from a stretched configuration we performed 100 000 sweeps. Figure 2
displays the specific heat as a function of temperature. The temperature set was optimized
following the suggestions by Trebst and Hansmann [8]. We observe a steep peak in the
specific heat at T1 = 481 K followed by a broader saddle at a second and lower temperature
T2 = 338 K. The two transitions are also visible in our order parameter Q displayed in
the inset. The steep increase at the higher temperature T1 is correlated with a helix–coil
transition at this temperature (data not shown), i.e., the formation of short-range contacts,
while the second transition at lower temperature T2 marks the formation of long-range contacts.
Figure 3 displays the configuration with lowest energy obtained in the simulation. It has
an all-atom root-mean-square deviation (rmsd) of 3.2 Å for residue 16–46. The N-terminal
helix, however, has the wrong orientation and the rmsd over all residues is therefore large
at 8.8 Å. The configuration with the highest value of Q is displayed in figure 4. Here, the
orientation of the N-terminal helix is correct, leading to an all-atom rmsd of 3.4 Å (over
all residues) and a solvent-accessible surface area of 3680 Å

2
that is smaller than the one

(4340 Å
2
) for the minimal energy configuration of figure 3. However, the energy of this
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Figure 2. Specific heat versus T of an unbiased parallel tempering run. The sharp specific heat
peak at T1 = 481 is correlated with the helix–coil transition.

Figure 3. Minimum energy configuration from the unbiased parallel tempering run. The N-terminal
helix has the wrong orientation and the rmsd over all residues is therefore large, at 8.8 Å. The all-
atom rmsd for residues 16–46 is 3.2 Å.

configuration is, at E = −567.2 kcal mol−1, almost 50 kcal mol−1 higher than that of the
minimal energy configuration (E = −614.6 kcal mol−1). This is because the ECEPP force
field overemphasizes helix formation. For protein A this leads to the formation of three helices
that are more elongated than observed in the native structure and therefore are too stiff to
arrange themselves into the correct configuration. Consequently, the higher energy of the
configuration with maximal order parameter Q is due to the intramolecular energy term EECEPP

(−378.0 kcal mol−1 versus −431.5 kcal mol−1), while the solvation energy Esolv is slightly
lower (−189.2 kcal mol−1 versus −183.1 kcal mol−1). From our result it is not clear whether
the global minimum energy configuration would be native-like and just was not found in the
simulation, or whether it differs for this force field from the native structure of figure 1. In either
case this indicates problems with our energy function that limit its use in protein simulations.

The situation is different in simulations with a Go-energy function. Here, it is ensured by
definition of the energy that the global minimum configuration is the native structure (or its
mirror configuration). This can be seen in figure 5 which displays the results from a simulation
with only the Go term of (6). The replicas differ here in the value of the Go parameter
kGo, i.e., the true inverse temperature in the system is βkGo (with β the inverse temperature
corresponding to T = 300 K). Shown again is the specific heat, and in the inset our order
parameter Q. The system does not seem to have any transition. The order parameter increases
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Figure 4. Most native-like configuration from the unbiased parallel tempering run. The orientation
of the N-terminal helix is correct, leading to an all-atom rmsd of 3.4 Å over all residues.

Figure 5. Specific heat C versus Go parameter kGo. There is no apparent specific heat peak. The
inset shows a smooth increase in Q. The structures become increasingly native-like as kGo increases.

monotonically. No pronounced peak is observed in the specific heat. By construction of the
energy function, the lowest energy configuration is also the one with the largest Q value, and
this is shown in figure 6. Note that this structure is actually a mirror configuration and therefore
the rmsd is 8 Å, larger than one would expect from visual inspection. If we add a small all-atom
energy contribution, it breaks the symmetry of the Go potential, and the lowest energy structure
found, with an all-atom rmsd of 3.49 Å (1.87 Å Cα), is very close to the native structure.

In the following we study how the bias introduced by a Go term affects the outcome of an
all-atom simulation. For this purpose we study our protein at a temperature T = 300 K just
below the folding temperature T2, varying the strength of the contribution of the Go term to
the total energy of the system over the ladder of replicas. Figure 7 shows the various energy
terms as a function of the coupling strength kGo of the Go term. As expected, the Go energy
decreases with increasing strength of coupling. However, the all-atom energy stays constant,
i.e., does not change with the introduction of the additional Go term. The superposition of the
two energy terms leads to a total energy Etot that sharply decreases for kGo � 0.2. Hence, for
a ‘critical’ kGo, the contribution from the Go term starts dominating the system. We therefore
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Figure 6. Minimum energy configuration from a parallel tempering with Go energy only. The
Go energy does not distinguish between the native structure and its mirror image. In this run we
obtained the mirror image of the native structure.

Figure 7. Total, all-atom, and Go energy versus kGo at constant temperature T = 300 K. At
kGo ≈ 0.2 the Go energy starts to dominate the behaviour of the total energy.

conjecture that kGo = 0.2 is the optimal value for coupling of the two energy terms. For a
lower value, the influence of the Go term is too weak to be effective, while for a larger value
the system behaves as a Go model.

Fixing now kGo = 0.2, we again vary the all-atom temperature across the replica. The
resulting lowest energy configuration is shown in figure 8. It has an all-atom rmsd of 4.5 Å
over all residues (compared to 8.8 Å for the case without a coupled Go term). When comparing
the all-atom energies, we find that the value for this configuration Eaa = −580.4 kcal mol−1 is
higher than that of the free case (Eaa = −614 kcal mol−1). Hence, it is not so that the additional
Go term solely smooths the energy landscape and increases in this way the chances of finding
native-like configurations as the true global minimum. Rather, we conjecture that for protein A
the global minimum in our all-atom force field is not the native structure. Only by adding the
Go term is the energy landscape deformed in a way such that the native structure (being a sub-
optimal competing local minimum in the all-atom energy) becomes the global minimum in the
total energy.
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Figure 8. Minimum energy configuration from a biased parallel tempering run with kGo = 0.2.

4. Conclusions

We have performed simulations of the 46 amino-acid long segment of protein A. Simulating
the protein with a ‘physical’ all-atom force field, we find low-energy configurations that are
similar to the native structure, but the global minimum configuration differs significantly (by
≈8 Å) from this. Addition of a Go term leads to a global minimum (in the combined energy)
in the simulation that is close to the native one. However, its all-atom energy is higher than the
one found for the global minimum found in a simulation relying only on an all-atom force field.
We conclude that the Go term deforms the energy landscape in a way that the native structure
becomes the global minimum in the combined energy but that the minimum is not the one for
the all-atom force field. The introduction of the Go term does not merely smooth the energy
landscape leading to a faster simulation of the system, but causes a large deformation of the
energy landscape. The results differ qualitatively from the results obtained from an all-atom
simulation. Adding a Go term like the one used in this paper is therefore not a suitable tool for
the faster thermalization of all-atom simulations.
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